
ZTE COMMUNICATIONS
December 2024 Vol. 22 No. 4

WU Jingguo, ZHU Jingwei, XIONG Xiankui, YAO Haidong, WANG Chengchen, CHEN Yun

Research on High-Precision Stochastic Computing VLSI Structures for Deep Neural Network Accelerators Special Topic

Research on HighResearch on High--Precision Stochastic Precision Stochastic
Computing VLSI Structures for Computing VLSI Structures for
Deep Neural Network AcceleratorsDeep Neural Network Accelerators

WU Jingguo1, ZHU Jingwei1, XIONG Xiankui2,3,

YAO Haidong2,3, WANG Chengchen2,3, CHEN Yun1

(1. Fudan University, Shanghai 200433, China；
 2. State Key Laboratory of Mobile Network and Mobile Multimedia
Technology, Shenzhen 518055, China；
 3. ZTE Corporation, Shenzhen 518057, China)

DOI: 10.12142/ZTECOM.202404003

https://kns.cnki.net/kcms/detail/34.1294.TN.20241105.1346.002.html,
published online November 5, 2024

Manuscript received: 2024-08-04

Abstract: Deep neural networks (DNN) are widely used in image recognition, image classification, and other fields. However, as the model
size increases, the DNN hardware accelerators face the challenge of higher area overhead and energy consumption. In recent years, stochastic
computing (SC) has been considered a way to realize deep neural networks and reduce hardware consumption. A probabilistic compensation
algorithm is proposed to solve the accuracy problem of stochastic calculation, and a fully parallel neural network accelerator based on a deter⁃
ministic method is designed. The software simulation results show that the accuracy of the probability compensation algorithm on the CIFAR-
10 data set is 95.32%, which is 14.98% higher than that of the traditional SC algorithm. The accuracy of the deterministic algorithm on the
CIFAR-10 dataset is 95.06%, which is 14.72% higher than that of the traditional SC algorithm. The results of Very Large Scale Integration
Circuit (VLSI) hardware tests show that the normalized energy efficiency of the fully parallel neural network accelerator based on the deter⁃
ministic method is improved by 31% compared with the circuit based on binary computing.
Keywords: stochastic computing; hardware accelerator; deep neural network

Citation (Format 1): WU J G, ZHU J W, XIONG X K, et al. Research on high-precision stochastic computing VLSI structures for deep neural
network accelerators [J]. ZTE Communications, 2024, 22(4): 9–17. DOI: 10.12142/ZTECOM.202404003
Citation (Format 2): J. G. Wu, J. W. Zhu, X. K. Xiong, et al., “Research on high-precision stochastic computing VLSI structures for deep neural
network accelerators,” ZTE Communications, vol. 22, no. 4, pp. 9–17, Dec. 2024. doi: 10.12142/ZTECOM.202404003.

1 Introduction

Today, with the rapid development of high-speed data
services such as the Internet and the Internet of
Things, a large number of data interactions bring con⁃
venience to people’s lives and at the same time, the

constantly increasing data volume brings challenges to the effi⁃
ciency of data processing algorithms and hardware perfor⁃
mance. Although the integrated circuit industry follows
Moore’s Law, chip integration is getting higher and higher
with the continuous reduction of process nodes, and chip per⁃
formance also improves. However, as the traditional comple⁃
mentary metal oxide semiconductor (CMOS) process size is
getting closer to the physical limit, new structures, new materi⁃
als, and new lithography techniques cannot stop the argument
that “Moore’s Law is dead”. The continuous reduction of chip
feature size leads to many difficult problems in chip manufac⁃
turing, such as poor robustness and heat dissipation. These
problems cannot be solved by integrating more transistors on
the chip, at this time, it is necessary to find a new method to
reduce the complexity of signal processing algorithms and cir⁃

cuit power consumption under the existing process conditions.
At this time, stochastic computing (SC) comes into view again.

Traditional stochastic computing refers to a computational
paradigm that employs randomness as a fundamental resource
for information processing. The data are represented and ma⁃
nipulated probabilistically, often using bitstreams or random
sequences to encode values. The weighted representation of
stochastic computing is different from that of binary. Stochas⁃
tic computing converts binary input into a probabilistic bit
stream, also known as a stochastic sequence, according to a
certain data format, and re-designs the corresponding basic
unit circuit according to the data format, so that the original
complex operation logic can be used to achieve the same pur⁃
pose with simple logic, that is, the algorithm realized by sto⁃
chastic computing has lower computational complexity. It can
reduce the hardware resource cost required to implement the
operation logic. Stochastic computing focuses on the number
of “1” in the stochastic sequence, and does not pay much at⁃
tention to the specific position of “1” and “0” in the gener⁃
ated stochastic sequence. Although the chip manufacturing

09

ZTE COMMUNICATIONS
December 2024 Vol. 22 No. 4

WU Jingguo, ZHU Jingwei, XIONG Xiankui, YAO Haidong, WANG Chengchen, CHEN Yun

Special Topic Research on High-Precision Stochastic Computing VLSI Structures for Deep Neural Network Accelerators

process such as technology and soft error may bring about the
phenomenon of a few bit errors, it will not have a great impact
on the final result of stochastic computing. This is the high
fault tolerance characteristic of stochastic computing. Since
the performance of stochastic computing circuits is essentially
anti-aging and is not affected by circuit topology and probabi⁃
listic coding, stochastic computing can provide a more relaxed
circuit design space, which provides hope for the future appli⁃
cation of emerging nanodevices. Stochastic computing not
only reduces the complexity of circuit design but also reduces
the requirement for device reliability. This suggests that sto⁃
chastic computing is an alternative to the inherent reliability
enhancement design of advanced technology nodes[1].

In 2021, LI et al. optimized stochastic sequence generation,
used separate weights and activation memory to load their re⁃
spective stochastic sequence generator buffers, spread the gen⁃
eration cost of activation flow through cross-row broadcast of
activation values, and corrected correlation through training,
thus bridging the accuracy gap between stochastic computing
and fixed-point neural networks[2]. In 2022, HU et al. [3] pro⁃
posed a complete stochastic computing architecture and real⁃
ized the flow sheet, which maximized fault tolerance and ro⁃
bustness, achieved an energy efficiency of 198.9 TOPS/W and
an area efficiency of 2 630 GOPS/mm2, and reduced the accu⁃
racy loss by 70%. Ref. [3] shows the great potential of low-cost
IoT neural network processors. In 2022, CHEN et al. [4] pro⁃
posed a low-complexity bitstream expansion method to sup⁃
press the computation errors of stochastic computing and pro⁃
posed a partition scheme with allocation decision to design hy⁃
brid stochastic binary computing multiplicative and additive
units to improve the processing speed of bitstream with mini⁃
mal overhead. In 2023, HU et al.[5] proposed a hybrid stochas⁃
tic multiplier combining unipolar coding and bipolar coding to
achieve a balance between high precision and low hardware
consumption and proposed a stochastic accumulator parallel
counter to attain high precision stochastic bit stream to binary
conversion with low hardware consumption. At the same time,
the finite state machine was used to realize the high-precision
Relu function circuit design. In 2023, FRASSER et al.[6] used
correlation and de-correlation to compute, and for the first
time embedded a fully parallel convolutional neural network
based on stochastic computing into a single FPGA chip,
achieving better performance results than traditional binary
logic and other stochastic computing implementations. In
2023, XIE et al.[7] proposed a new stochastic computing accel⁃
erator for convolutional neural networks, which utilized the
nuclear parallelism of convolutional layers to reduce hardware
area and energy consumption effectively.

However, the accuracy of traditional stochastic computing
is not enough, which makes the final result worse. To improve
the calculation accuracy, this paper proposes a probability
compensation algorithm based on the relative error distribu⁃
tion of the traditional stochastic computing multiplier, which

maps the data to the region with a small relative error through
the function and then performs data inverse processing. The
accuracy rate of the accelerator on the CIFAR-10 data set is
95.32%. In addition, a fully parallel neural network accelera⁃
tor based on the deterministic method is designed, and the ac⁃
curacy of the accelerator on the CIFAR-10 dataset is 95.06%.
This design adopts TSMC 28 nm CMOS technology, and the
energy efficiency is 1.371 TOPS/W.

The rest of the paper is organized as follows. Section 2 intro⁃
duces the basic concepts and a brief review of SC. The third
section gives the architecture design of the hardware accelera⁃
tor. In Section 4, the experimental results of the probabilistic
compensation algorithm and the accuracy, hardware evalua⁃
tion, and comparison of all parallel neural network accelera⁃
tors based on the deterministic method on multiple data sets
are introduced. Finally, Section 5 draws the conclusion.
2 Background

2.1 Stochastic Computing
Different from the binary weight representation method, sto⁃

chastic computing is represented by converting the binary in⁃
put into a finite-length stochastic bit stream, that is, the prob⁃
ability of the occurrence of “1” in the stochastic bit stream is
represented by the corresponding binary value, which is the
most common unipolar data format. For stochastic computing,
each “1” in a stochastic bit stream has an equal weight. For a
string of n-bit stochastic bit streams represented by the unipo⁃
lar type, the corresponding binary value x is equal to the prob⁃
ability Px of “1” appearing in the stochastic bit stream, so the
representation range of unipolar type is [0, 1], and the data
represented by each “1” is 1/N, that is, the accuracy of data
represented by the unipolar type is 1/N. The research process
of stochastic computing is summarized. The structure of the
stochastic computing paradigm in Fig. 1 is obtained.

The structure of the stochastic computing paradigm is com⁃
posed of three main parts. The first is the interface part of bi⁃
nary to a stochastic number, which is composed of a random
number generator and a comparator. In the traditional struc⁃
ture, the random number generator uses the linear feedback
shift register (LFSR) structure to generate random numbers.
The second is the stochastic computing operation unit, which
is represented by different basic gate units according to differ⁃
ent data formats of stochastic computing. The last part is the
stochastic number to the binary interface, which is generally
composed of counters under the serial structure.

For stochastic sequences generated by unipolar data for⁃
mats, multiplication is often performed with gates. An ex⁃
ample of multiplication unit input and output for a unipolar
data format is shown in Fig. 2.

The traditional stochastic computing multiplier is composed
of a stochastic sequence generator, two inputs, a gate and a
counter, and its structure is simple and clear. For the design

10

ZTE COMMUNICATIONS
December 2024 Vol. 22 No. 4

WU Jingguo, ZHU Jingwei, XIONG Xiankui, YAO Haidong, WANG Chengchen, CHEN Yun

Research on High-Precision Stochastic Computing VLSI Structures for Deep Neural Network Accelerators Special Topic

of this paper, int8 data are selected as the data input. Consid⁃
ering the data contain one symbol bit, int8 data can be split
into symbol bits and numerical bits for multiplication. There⁃
fore, the combination of seven-bit LFSR and seven-bit com⁃
parator is selected as the stochastic sequence generator. The
stochastic sequence is generated by comparing the numerical
bits of data input with the corresponding output values of
LFSR. The counter is completed by the additional operation
on the software side. When the stochastic sequence corre⁃
sponding to the two inputs is 1, the resulting counter is in⁃
creased by 1. For the seed selection of the random number
generator, as long as the seeds are not the same, there is no
fundamental impact on the stochastic computing multiplier.
The current design does not consider the specific impact of
other seed selections.
3 Accelerator Design

3.1 Probability Compensation Algorithm
The implementation of the stochastic multiplier is very

simple, requiring only two inputs and a gate to implement
binary multiplication logic, so it is often used to illustrate
the simplicity of the logical unit of stochastic computing.
However, simple logic often comes with certain disadvan⁃
tages. Different from the binary accurate calculation, due to
the randomness of stochastic computing, the calculation re⁃
sults also have stochastic properties, and the error of the
calculation results is not uniform, resulting in poor perfor⁃

mance in the performance test of the
convolutional neural network built by
the traditional stochastic computing
multiplier, which is an important prob⁃
lem to be solved in this paper.
3.1.1 Error Analysis of Stochastic Compu⁃

tational Multiplier
The software side uses the pyLFSR li⁃

brary of Python to make the software
side model closer to the hardware model.
A random int8 data input error test was
carried out for the completed traditional
stochastic computing multiplier model.
The input data was in the form of fixed-
point numbers. The errors between the
calculated results and theoretical results
were measured by mean relative error

(MRE), mean error (ME), and maximum relative error
(ERR_max), and the corresponding calculation formula was
shown as follows.

MRE = 1
N ⋅ ∑

i = 1

N |

|
|
||
||

|
|
||
| xi - x_real i

x_real i , (1)

ME = 1
N ⋅ ∑

i = 1

N xi - x_real i

x_real i , (2)

ERR_max = max ()xi - x_real i

x_real i , (3)
where N is the total number of test data, xi is the calculation
result of the stochastic computing multiplier, and x_reali is the
theoretical calculation result.

Random number generator seeds are selected as [1, 1, 0, 0,
1, 1, 1] and [1, 0, 1, 1, 1], and fixed-point random data input
is generated by the randint function in the Python library. The
results of the 10 000 random samples simulation show that
MRE and ME of a traditional stochastic multiplier are 15.47%
and 10.23%, and ERR_max is 127. To better understand the
distribution of relative errors and make appropriate adjust⁃
ments, the input data are divided into 10 intervals according
to the seven-bit numerical bits on average. There are 100 two-
dimensional intervals corresponding to the two inputs in pairs.
Each interval generates 1 000 random fixed points within the
interval range, and the simulation of relative error distribution
is carried out. The resulting relative error distribution is
shown in Fig. 3. To facilitate observation, the squares with
small relative errors in the thermal map are filled with a light
color system, and the squares with large relative errors in the
thermal map are filled with a dark color system. The darker
the color is, the larger the relative errors are. The color and

CMP: comparator
CNT: counter

RNG: random number generator
SNG: stochastic number generator

▲Figure 1. Stochastic computing paradigm

▲Figure 2. A stochastic computing multiplier unit in a unipolar data format

SNG
RNG x

N N

CMP

Stochastic number

B2S interface
B2S unit

B2S unit

B2S unit

B2S unit

︙

S2B unit

S2B unit

S2B unit

S2B unit

︙

S2B interface

Stochastic computing unit

Stochastic number

CNT

Binary number

P (A = 1) = 1
2

P (B = 1) = 1
2

A=1100_0101

B=0110_1100 P (Q = 1) = 1
4

Q=0100_0100

11

ZTE COMMUNICATIONS
December 2024 Vol. 22 No. 4

WU Jingguo, ZHU Jingwei, XIONG Xiankui, YAO Haidong, WANG Chengchen, CHEN Yun

Special Topic Research on High-Precision Stochastic Computing VLSI Structures for Deep Neural Network Accelerators

corresponding value are given in the legend on the right of the
figure, and the relative error value of the square is marked in
each square. By observing the thermal distribution diagram of
relative error, it is found that the dark grid is concentrated in
the upper left corner of the thermal map, that is, when the two
input data are both small, the relative error of the calculated
result is large, which is consistent with the previous ERRmax.
In heat maps, the relative error is mostly less than 4%, and
the further you go to the left, the greater the relative error is.
Theoretically speaking, since x_reali is in the denominator of
the relative error formula, when the absolute error between
x_reali and xi is at the same magnitude, the smaller x_reali is,
the greater the relative error will be. The relative error distri⁃
bution of the thermal map is in agreement with the theoretical
analysis results.
3.1.2 Research on Compensation Mechanism of Traditional

Stochastic Computing Multiplier
To eliminate the serious influence of the local relative error

on the whole relative error shown in the thermal map, the com⁃
pensation mechanism of the stochastic computing multiplier is
studied. Considering that the position with the greatest rela⁃
tive error appears on the far left and top, and the worst case is
concentrated in the upper left corner, that is, the relative error
of the calculation result is larger when one input datum is
small, and the relative error of the calculation result is large
when the two input data are small at the same time, which ex⁃
plores a situation where the data are mapped from the upper

left corner to the lower right corner by using accurate interme⁃
diate calculation. After the calculation, the accuracy compen⁃
sation is carried out by reflecting in the upper left corner. The
compensation method is called probability compensation,
which means increasing the probability of the data interval
with a small relative error in the calculation to improve the
overall data accuracy. Fig. 4 is the flow chart of the probabil⁃
ity compensation algorithm.

In Fig. 4, the probability compensation algorithm adds two
steps of data preprocessing and data inverse processing based
on traditional stochastic computing. After data preprocessing,
binary input enters the comparator together with the random
numbers generated by the random number generator LFSR for
comparison. After stochastic computing and multiplication
unit, the preprocessed stochastic sequence is converted into
binary for data inverse processing. Utilizing data mapping, the
probability compensation algorithm converts the data involved
in the operation to the data region with high accuracy, to com⁃
pensate for the accuracy of the traditional stochastic comput⁃
ing and multiplication algorithm.

For probability compensation, a function f(x) should be
found to satisfy certain conditions, and the data should be pre⁃
processed by function mapping. To ensure fairness in mapping
the two input data, the same function f(x) is used for mapping.
The data representation range of unipolar stochastic comput⁃
ing is [0, 1], that is, the value range of the two input data is [0,
1]. Since the input data with large relative error is concen⁃
trated in the data interval close to 0, the function f(x) should

▲Figure 3. Heatmap of the relative computational error distribution of the traditional stochastic computing multiplier

Heatmap for data_normal

x label
x-0 x-1 x-2 x-3 x-4 x-5 x-6 x-7 x-8 x-9

y la
bel

y-0

y-1

y-2

y-3

y-4

y-5

y-6

y-7

y-8

y-9

8.694 163

1.461 692

0.555 847

0.454 115

0.405 524

0.241 396

0.199 931

0.146 369

0.132 434

0.056 721

1.252 415

0.174 091

0.094 514

0.171 877

0.078 937

0.099 807

0.045 062

0.042 091

0.045 077

0.026 441

0.729 835

0.134 223

0.089 103

0.046 965

0.052 242

0.038 545

0.027 996

0.023 802

0.029 486

0.021 330

0.378 454

0.114 657

0.055 901

0.035 910

0.025 451

0.028 163

0.042 269

0.013 132

0.012 165

0.010 301

0.267 207

0.098 653

0.033 302

0.033 798

0.023 016

0.022 644

0.021 338

0.011 606

0.010 216

0.006 799

0.194 868

0.091 444

0.028 549

0.027 503

0.020 127

0.018 135

0.015 209

0.009 201

0.009 087

0.006 441

0.185 724

0.060 056

0.022 790

0.017 701

0.011 929

0.017 667

0.010 766

0.009 087

0.005 910

0.008 745

1.0

0.8

0.6

0.4

0.2

0.0

0.181 526

0.048 768

0.029 888

0.019 254

0.015 573

0.014 774

0.016 944

0.007 738

0.006 944

0.006 678

0.109 845

0.027 284

0.026 124

0.018 803

0.010 932

0.009 488

0.008 108

0.005 684

0.007 816

0.005 221

0.056 146

0.040 451

0.016 589

0.019 504

0.011 823

0.006 217

0.006 940

0.004 076

0.004 206

0.004 241

12

ZTE COMMUNICATIONS
December 2024 Vol. 22 No. 4

WU Jingguo, ZHU Jingwei, XIONG Xiankui, YAO Haidong, WANG Chengchen, CHEN Yun

Research on High-Precision Stochastic Computing VLSI Structures for Deep Neural Network Accelerators Special Topic

map the data close to 0 to the data interval close to 1. The in⁃
put data with small relative error should remain unchanged
or change in a small amplitude as much as possible, so it is
necessary to find a function, of which the domain and range
are both [0, 1]. At the same time, since the inverse function
of f(x) needs to be used for data inverse processing, the func⁃
tion f(x) must meet the requirement of the existence of an in⁃
verse function, and the influence of two input data mappings
must be offset at the same time. To sum up, the function re⁃
quired for probability compensation should meet the follow⁃
ing requirements.
1) The domain of f(x)is [0, 1], and the range is also [0, 1];
2) f(x) is monotone in the domain of definition, and most of the
values are in the numerical interval with small relative error,

to meet the requirement of probability
mapping and the existence of inverse
function;
3) f(x, y) = f(x) × f(y), where x and y repre⁃
sent two input data. If this condition is
met, the inverse function can simultane⁃
ously offset the influence of the mapping
of two input data.

To find a function that meets the re⁃
quirements, the entry point lies in the re⁃
quirement that f(x, y) = f(x) × f(y). After
deliberation, the power function of x can
meet this requirement, so based on the
power function, the function that meets
the other two requirements is found. To

satisfy that most of the values of f(x) are in the numerical inter⁃
val with small relative error, the time function f(x) should be
above f(x)=x. Since the domain contains the point x=0, the sat⁃
isfying function f(x) is shown in Eq. (4).

f ()x = xa, a ∈ ()0, 1 . (4)
To facilitate subsequent data reverse processing and con⁃

sider the complexity problem, the corresponding function a=1/
2 is selected for simulation. The algorithm flow is consistent
with that of Fig. 4. Random data with the same relative error
distribution thermal map as that of the traditional stochastic
computing multiplier in Fig. 3 are used, and the thermal map
results obtained are shown in Fig. 5. The preprocessing func⁃

▲Figure 4. Flow chart of a probability compensation algorithm

CMP: comparator CNT: counter LFSR: linear feedback shift register

▲Figure 5. Heatmap of the relative computational error distribution of the stochastic computing multiplier with probability compensation

1.0

0.8

0.6

0.4

0.2

0.0
x-0 x-1 x-2 x-3 x-4 x-5 x-6 x-7 x-8 x-9

y
lab

el

y-0

y-1

y-2

y-3

y-4

y-5

y-6

y-7

y-8

y-9

Heatmap for data_x2

0.229 449

0.211 670

0.113 572

0.119 499

0.073 636

0.092 412

0.086 404

0.050 999

0.045 110

0.081 517

0.120 636

0.060 064

0.039 865

0.058 543

0.045 324

0.038 510

0.038 767

0.032 307

0.028 316

0.044 998

0.106 286

0.045 219

0.051 378

0.040 425

0.035 316

0.045 564

0.043 061

0.043 106

0.042 648

0.040 360

0.108 584

0.050 573

0.048 948

0.035 539

0.022 785

0.039 770

0.035 063

0.032 861

0.026 908

0.039 804

0.083 215

0.052 479

0.049 352

0.030 920

0.019 597

0.037 285

0.030 606

0.032 165

0.029 226

0.045 689

0.063 059

0.051 068

0.028 169

0.024 540

0.023 326

0.026 392

0.023 059

0.016 630

0.014 927

0.037 522

0.058 614

0.090 370

0.055 935

0.037 052

0.038 303

0.042 796

0.021 860

0.009 466

0.012 047

0.030 051

0.041 781

0.036 593

0.023 551

0.018 378

0.019 161

0.026 304

0.017 882

0.008 374

0.010 782

0.022 540

0.041 833

0.035 829

0.019 970

0.013 554

0.020 902

0.020 698

0.020 751

0.010 192

0.008 107

0.018 381

0.052 796

0.075 029

0.059 161

0.029 774

0.039 338

0.030 828

0.023 865

0.017 276

0.014 337

0.020 847

Binary
input A

Binary
input B

f(x)

f(x)

LFSR1

LFSR0
CMP

CMP

CNT f-1(x) Output
Data

inverse
processing

Data prepro⁃cessing

x label

13

ZTE COMMUNICATIONS
December 2024 Vol. 22 No. 4

WU Jingguo, ZHU Jingwei, XIONG Xiankui, YAO Haidong, WANG Chengchen, CHEN Yun

Special Topic Research on High-Precision Stochastic Computing VLSI Structures for Deep Neural Network Accelerators

tion is named according to the preprocessing function, where
a=1/2 is denoted as probability compensation. After using the
idea of probability compensation, the dark grid in the thermal
map is completely eliminated, which means that the relatively
large relative error value is perfectly compensated, and the
feasibility of the idea of probability compensation is verified.
3.2 Fully Parallel Accelerator Hardware Design

3.2.1 Accelerator Architecture
In the aspect of the fully parallel accelerator, the accuracy

of matrix multiplication is improved based on the determinis⁃
tic method. As shown in Fig. 6, the fully parallel stochastic
computing systolic array accelerator consists of 7 modules: in⁃
put A buff, input B buff, stochastic number generator 0
(SNG0), stochastic number generator 1 (SNG1), finite state ma⁃
chine (FSM), result buff, and SC_systolic array.

These modules are divided into three parts: the first part is
composed of input A buff, input B buff, SNG0, and SNG1,
which mainly completes the conversion of binary elements
that need to be calculated in matrices A and B into the bit
stream required for stochastic computing. The second part is
composed of the SC_systolic array and result buff. This part is

the core computing unit in the entire hardware structure,
which multiplies the stochastic computing bit stream that com⁃
pletes accumulation inside the unit, and finally puts the result
into the result buff for caching. The third part is FSM, which
completes the generation of data flow control signals, such as
calculation start signals, result shift signals, and calculation
end signals.

Similar to the serial accelerator architecture, the fully paral⁃
lel accelerator proposed in this paper organizes all processing
element (PE) units into a systolic array in the form of input
and weight flow and partial product immobility. Input data en⁃
ter the systolic array in a step form from left to right. PE units
in the same row share the same stochastic computing parallel
bit stream (from matrix A). This parallel bit stream will be
passed one by one in the same row of PE cells on a clock
cycle. The weight data also enter the systolic array in the form
of a ladder from top to bottom, and the processing units in the
same column share the same stochastic computing parallel bit
stream (from matrix B), which will be passed one by one in the
PE cells within the same column in the number of clock
cycles. The final calculation result is controlled by a shift con⁃
trol signal and flows between PE units on a clock cycle, and is
finally transmitted successively to the result buff.

3.2.2 PE Unit and Systolic Array
Design

The PE unit in the fully paral⁃
lel stochastic computing systolic
array receives the parallel bit
stream generated by the determin⁃
istic method and completes the
dot product operation of the sto⁃
chastic computing bit stream. In
addition to the PE unit directly
connected to the stochastic se⁃
quence generator, the remaining
PE units receive the elements, the
result, and the shift control signal
from the previous PE unit. Ten in⁃
ternal registers are used to cache
data and intermediate results and
control signals.

In a fully parallel scheme, the
multiplication of PE cells is per⁃
formed using the partial product
form, and four stochastic parallel
bit streams, A_high_sc, A_low_
sc, B_high_sc, and B_low_sc,
are generated by a stochastic se⁃
quence generator. After each sto⁃
chastic parallel bit stream is
matched with a stochastic paral⁃
lel bit stream generated by an⁃

FSM: finite state machine
PE: processing element

SC: stochastic computing
SNG: stochastic number generator

▲Figure 6. Hardware architecture of the fully parallel stochastic computing of the systolic array

SC bit streamBinary data Binary data

#0

#1

#15

SNG0

SNG0

SNG0

︙ ︙ ︙ ︙ ︙ ︙

Res
ult

buf
f

SN
G0

Inp
ut A

 bu
ff

SC hardware architecture

Input B buff
SNG1

FSMBinary
inputs

SC_systolic
array ︙

a0_1 a0_0

a1_1 a1_0

a15_1 a15_0

64
64
64
64

64
64

PE PE

PE PE

PE PE

PE

PE

PE 32

32

32

64 64 64 64 64 64

#0 #1 #15SNG1 SNG1 SNG1

…

…

…

…

…

8

8

8

8 8 8

︙
b1_0
b0_0

b1_1
b0_1

︙
︙

b1_15
b0_15︙

︙

…

︙

…

…

…

︙ ︙

14

ZTE COMMUNICATIONS
December 2024 Vol. 22 No. 4

WU Jingguo, ZHU Jingwei, XIONG Xiankui, YAO Haidong, WANG Chengchen, CHEN Yun

Research on High-Precision Stochastic Computing VLSI Structures for Deep Neural Network Accelerators Special Topic

other matrix, the number of “1” in the phase and the result
are calculated through an addition tree structure, where the
addition tree used is equivalent to 64 inputs, and each input is
a 1-bit full adder. After the results of the full adder are
shifted, the final calculation result is obtained. The shift sig⁃
nal is shift controlled and sent by the FSM to determine when
the final cumulative results inside the PE unit will be transmit⁃
ted. When the processing unit PE has not completed the calcu⁃
lation, the shift signal is “0”, and the PE unit is responsible
for receiving the result of the previous unit and passing it to
the next unit. When the PE unit completes the final calcula⁃
tion, the shift signal is set to “1” and the final calculation re⁃
sults are transmitted in turn.
3.2.3 Stochastic Number Generator Design

The stochastic sequence generator used in the fully paral⁃
lel scheme uses a deterministic method to generate a stochas⁃
tic computing parallel bit stream. The data in int8 format are
divided into a 1-bit symbol bit and two 3-bit numerical bits
by bit segmentation, and the lowest 1-bit numerical bit is dis⁃
carded to match the partial product allocation, which is re⁃
corded as the round bit segmentation method. Fig. 7 shows
the internal structure diagram of SNG in the hardware design
of a fully parallel accelerator. When two 3-bit numerical bits
enter the basic sequence generation module, each 3-bit nu⁃
merical bit is copied by binary weight, and the highest bit is
fixed as “0”, because the results generated by the copied and
rotating methods are independent of the sorting method of
the basic stochastic sequence. A base stochastic sequence of
8-bit without introducing additional hardware consumption is
generated.

One datum in the int8 format corresponds to two basic sto⁃
chastic sequences. In the matrix multiplication operation, the
int8 input data in matrix A correspond to the internal opera⁃

tion of SNG0, and the two basic stochastic sequences gener⁃
ated in SNG0 are continuously copied 7 times using the cop⁃
ied unit. The high 64-bit width corresponds to the stochastic
parallel bit stream A_high_sc, and the low bits correspond to
the stochastic parallel bit stream A_low_sc. The internal line
connection of the copied unit is shown in Fig. 8a. The input
data of int8 in matrix B correspond to the internal operation
of SNG1. SNG1 uses the rotating unit to replace the copied
unit in SNG0, and the rest are completely consistent with
SNG0. The SNG1 internal structure diagram is no longer
listed here. The two basic stochastic sequences generated in

LSB: least significant bit
▲Figure 7. Fully parallel random number generator

▲Figure 8. Copied and rotating units

(a) Copied unit

(b) Rotating unit

Input data
8

Sign

LSB

Complement
to true code

module
Basic sequence generation module

LSB

0

0

LSB
Basic sequence generation module

8

8
#0 #1

#0 #1
8 8 8 8 64

Copied
unit

Copied
unit Copied

unit

8 8 8 8 64
Copied

unit
Copied

unit Copied
unit…

…

Sign bit

High bits correspond
to stochastic

sequences

Low bits correspond
to stochastic

sequences

#6

#6
︙

Input data
8

Input data
8

Output data
8

Output data
8

15

ZTE COMMUNICATIONS
December 2024 Vol. 22 No. 4

WU Jingguo, ZHU Jingwei, XIONG Xiankui, YAO Haidong, WANG Chengchen, CHEN Yun

Special Topic Research on High-Precision Stochastic Computing VLSI Structures for Deep Neural Network Accelerators

SNG1 are rotated 7 times by the rotating unit to obtain a 64-
bit high corresponding to a stochastic parallel bit stream
B_high_sc and a 64-bit low corresponding to a stochastic par⁃
allel bit stream B_low_sc. The internal line connections of
the rotating unit are shown in Fig. 8b. Finally, four stochastic
parallel bits are generated and transmitted into the systolic
array. The generation process only changes the order of con⁃
nections and the number of replicated connections without in⁃
troducing additional hardware consumption.
4 Experiment and Analysis

4.1 Software Simulation Results and Analysis
The designed two accelerators are applied to the neural net⁃

work through the img2col algorithm. The seeds used for each
random number generator are the same as previously men⁃
tioned. The network used is Resnet 18[8], and the quantization
bit is 1-bit symbol bit plus 7-bit numerical bit. The MNIST[9]
and the CIFAR-10[10] data sets are used for testing, and the
test results obtained are shown in Table 1.

In the MNIST data set, there is no significant difference be⁃
tween schemes. The accuracy of all schemes except traditional
schemes can reach more than 99% in the MNIST data set, and
the accuracy of traditional SC schemes can also reach
98.56%. When tested on the more complex CIFAR-10 data⁃
set, the accuracy of the traditional SC scheme is only 80.34%,
15% lower than that of binary. The precision is improved to
95.32% by the x probability compensation SC scheme and
95.06% by the deterministic SC scheme.
4.2 Back-End Implementation Results and Analysis

The layout and cabling of the TSMC 28 nm process with
process nodes are completed by using the layout tool IC com⁃
piler (ICC) and the core voltage is 0.9 V. The layout param⁃
eters achieved are shown in Table 2.

According to the process node scaling method[11], the 65 nm
process node used by the Eyeriss v2 accelerator[12] is normal⁃
ized to the 28 nm process node used in this work, and the
clock frequency scaling parameters are shown in Eq. (5).

Nc = 65
28 . (5)

Load capacitance scaling parameters are shown in Eq. (6).
NCL = 65

28 . (6)
Dynamic power consumption is the main power consump⁃

tion in high-speed chips, and the dynamic power consumption
formula of switches is shown in Eq. (7).

P = V 2 ⋅ CLoad ⋅ f . (7)
Therefore, power scaling parameters are shown in Eq. (8).
NP = ()0.9

1.2
2

⋅ 28
65 ⋅ 65

28 = 0.562 5. (8)
The energy efficiency ratio formula is shown as Eq. (9).
GOPS/W = calculations per second

P . (9)
The energy efficiency ratio corresponding to the designed

accelerator can be obtained according to Eq. (9). By combin⁃
ing Eqs. (5), (8), and (9), the normalized parameters of the en⁃
ergy efficiency ratio can be calculated as shown in Eq. (10).

N = 1
0.562 5 × 65

28 = 4.126 98 . (10)
Table 3 compares the results of the energy efficiency ratio

between the neural network accelerator implemented in this
work and the Eyeriss v2 accelerator[12], in which the energy ef⁃
ficiency ratio in the Eyeriss v2 accelerator is normalized. It
can be seen from the results of Table 3 that compared with the
normalized energy efficiency ratio of the Eyeriss v2 accelera⁃

▼Table 1. Test results of neural network accelerator application based
on stochastic computing

DataSet

MNIST

CIFAR-10

Method
Binary

Traditional SC
x Probability compensation SC

Deterministic method SC
Binary

Traditional SC
x Probability compensation SC

Deterministic method SC

Network Accura⁃
cy/%
99.55
98.56
99.50
99.43
95.52
80.34
95.32
95.06

SC: stochastic computing

▼ Table 3. Comparsion of stochastic computing DNN implementations
with other very large scale integration circuit (VLSI) deep neural net⁃
works (DNN)

Accelerator

Eyeriss v2[12]

Classic serial
Fully parallel

Type

Binary computing
Uncompensated

Deterministic method

Process
Node/nm

65
28
28

EER
(GOPS/W)

253.2
6 297.7
1 371.0

Normalized
EER

(GOPS/W)
1 045.0
6 297.7
1 371.0

EER: energy efficiency ratio

▼Table 2. Layout parameters of the neural network accelerator based
on stochastic computing

Method
Traditional SC
Fully parallel

Type
Uncompensated

Deterministic method

Clock Frequen⁃
cy/MHz
1 000
313

Area/
mm2

0.104
0.601

Power/
mW
81.3

116.7
SC: stochastic computing

16

ZTE COMMUNICATIONS
December 2024 Vol. 22 No. 4

WU Jingguo, ZHU Jingwei, XIONG Xiankui, YAO Haidong, WANG Chengchen, CHEN Yun

Research on High-Precision Stochastic Computing VLSI Structures for Deep Neural Network Accelerators Special Topic

tor, the fully parallel stochastic computing neural network ac⁃
celerator based on the deterministic method has improved by
31%. Although the normalized energy efficiency ratio of tradi⁃
tional stochastic computing neural network accelerators is the
highest, the data set of this scheme is less accurate and should
not be compared with.
5 Conclusions

In this paper, a probability compensation algorithm is pro⁃
posed based on the relative error distribution of the tradi⁃
tional stochastic multiplier. The accuracy of the accelerator
on the CIFAR-10 dataset is 95.32%. In addition, a fully par⁃
allel neural network accelerator based on the deterministic
method is designed, and the accuracy of the accelerator on
the CIFAR-10 dataset is 95.06%. This design adopts TSMC
28 nm CMOS technology, and the energy efficiency is 1.371
TOPS/W. Through hardware and software evaluation, the
implementation results show that the proposed design is su⁃
perior to the hardware implementation of DNN based on tra⁃
ditional binary computing logic in terms of energy efficiency
ratio, and the network accuracy is superior to the traditional
SC-DNN implementation.
References
[1] ZHANG Z D, WANG R S, ZHANG Z, et al. Circuit reliability comparison

between stochastic computing and binary computing [J]. IEEE transactions
on circuits and systems II: express briefs, 2020, 67(12): 3342 – 3346.
DOI: 10.1109/tcsii.2020.2993273

[2] LI T M, ROMASZKAN W, PAMARTI S, et al. GEO: Generation and ex⁃
ecution optimized stochastic computing accelerator for neural networks
[C]//Proceedings of 2021 Design, Automation & Test in Europe Confer⁃
ence & Exhibition (DATE). IEEE, 2021: 689 – 694. DOI: 10.23919/
date51398.2021.9473911

[3] HU Y X, ZHANG Y W, WANG R S, et al. A 28-nm 198.9-TOPS/W fault-
tolerant stochastic computing neural network processor [J]. IEEE solid-
state circuits letters, 2022, 5: 198–201. DOI: 10.1109/lssc.2022.3194954

[4] CHEN Z Y, MA Y F, WANG Z F. Hybrid stochastic-binary computing for
low-latency and high-precision inference of CNNs [J]. IEEE transactions
on circuits and systems I: regular papers, 2022, 69(7): 2707–2720. DOI:
10.1109/tcsi.2022.3166524

[5] HU S, HAN K N, HU J H. High performance and hardware efficient sto⁃
chastic computing elements for deep neural network [C]//Proceedings of
6th World Conference on Computing and Communication Technologies
(WCCCT). IEEE, 2023: 181 – 186. DOI: 10.1109/
wccct56755.2023.10052402

[6] FRASSER C F, LINARES-SERRANO P, DE LOS RÍOS I D, et al. Fully
parallel stochastic computing hardware implementation of convolutional
neural networks for edge computing applications [J]. IEEE transactions on
neural networks and learning systems, 2023, 34(12): 10408–10418. DOI:
10.1109/tnnls.2022.3166799

[7] XIE Z P, YUAN C Y, LI L K, et al. Energy-efficient stochastic computing
for convolutional neural networks by using kernel-wise parallelism [C]//
Proceedings of IEEE International Symposium on Circuits and Systems
(ISCAS). IEEE, 2023: 1–5. DOI: 10.1109/iscas46773.2023.10181378

[8] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image
recognition [C]//Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE, 2016: 770–778. DOI: 10.1109/cvpr.2016.90

[9] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning ap⁃
plied to document recognition [J]. Proceedings of the IEEE, 1998, 86(11):
2278–2324. DOI: 10.1109/5.726791

[10] KRIZHEVSKY A. Learning multiple layers of features from tiny images
[EB/OL]. (2012-05-20) [2024-08-01]. https://www.researchgate.net/publi⁃
cation/265748773_Learning_Multiple_Layers_of_Features_from_Tiny_
Images

[11] NISHI Y, DOERONG R. Handbook of semiconductor manufacturing
technology [M]. Boca Raton, USA: CRC Press, 2008

[12] CHEN Y H, YANG T J, EMER J S, et al. Eyeriss v2: a flexible accelera⁃
tor for emerging deep neural networks on mobile devices [J]. IEEE jour⁃
nal on emerging and selected topics in circuits and systems, 2019, 9(2):
292–308. DOI: 10.1109/JETCAS.2019.2910232

Biographies
WU Jingguo received his BS degree in microelectronics science and engineer⁃
ing from Xi’an Jiaotong University, China in 2021. He is currently pursuing for
a master’s degree at Fudan University, China. His main research interest is sto⁃
chastic computing.

ZHU Jingwei is a PhD candidate in the School of Microelectronics, Fudan Uni⁃
versity, China. He received his MASc degree from Fudan University. His cur⁃
rent research interests include neuromorphic computing, spiking neural net⁃
works and NoC.

XIONG Xiankui graduated from University of Electronic Science and Technol⁃
ogy of China. He is the chief architect of the Wireless Department and the lead⁃
er of the Prospect Team of the Smart Computing Technical Committee, ZTE Cor⁃
poration. He has been engaged in long-term research on computing systems and
architectures, advanced computing paradigms, and heterogeneous computing
accelerators. He has led the system architecture design of the ZTE ATCA ad⁃
vanced telecom computing platform, server storage platform, smart NIC, and AI
accelerator.

YAO Haidong graduated from the University of Science and Technology of
China, and he is a senior expert in the field of wireless communications at ZTE
Corporation. He is mainly engaged in the research and design of deep learning,
large language model network architecture, and compilation and conversion
technology.

WANG Chengchen graduated from the Department of Precision Instrument,
Tsinghua University, China and is now working in ZTE Corporation. His re⁃
search directions include computing in memory, optical calculation, and proba⁃
bility calculation.

CHEN Yun (chenyun@fudan.edu.cn) received her BSc degree from University
of Science and Technology of China in 2000, and PhD degree from Fudan Uni⁃
versity, China in 2007. She joined Fudan University at the same year, where
she has been a professor with the State Key Laboratory of ASIC and Systems.
She has published more than 60 articles in renowned international journals and
conferences and applied for more than 20 patents. Her research interests in⁃
clude baseband processing technologies for wireless communication and ul⁃
tralow power FEC IC design. Pro. CHEN is a member of the Steering Committee
of SIPS and the ASICON Technical Committee. She serves as a TPC Member
for ASSCC. She also serves as the Chair Secretary for the Shanghai Chapter of
IEEE SSCS, and the Co-Chair for the Circuit System Division, the Chinese Insti⁃
tute of Electronics. She is a senior member of IEEE.

17

